Das 18. Fensterl des MINT-Adventkalenders öffnet sich.....

Binäre Zahlen - ein System, auf dem die Sprache unsere digitalen Welt aufgebaut ist. Kannst du damit rechnen?

10011010 + 110110 = ???

Das binäre oder duale Zahlensystem besteht aus nur 2 Werten - 0 und 1. Es ist allerdings keine Erfindung unserer Computerzeit, die ersten Kenntnisse eines dualen Zahlensystem datiert auf 300 vCh. und weist auf den altindischen Mathematiker Pingala hin. 

Der Chinese Shao Yong entwickelte das System weiter und fand eine Methode, die Zahlen von 1 bis 64 mit Hilfe von Hexagrammen darzustellen. 

Gottfried Wilhelm Leibniz nutzte diese Technologie dann 1705 zum Bau seiner ersten Rechenmaschine. 

Aber wie sind binäre Zahlen aufgebaut und wie kann man sie lesen? 

Unser dekadisches System kann als Muster hergenommen werden: 

Eine 4-Stellige Zahl hat eine Tausender, Hunderter, Zehner und Einer-Stelle. 

Die Einerstelle ist 10hoch 0, die Zehner 10hoch1, die hunderter 10hoch2,..... Dazu noch die Anzahl zw. 0 und 9. (900 = 9*10hoch2)

Im Binären Zahlensystem ist alles auf Basis 2, die Anzahl ist 0 oder 1. 

2hoch52hoch42hoch32hoch22hoch12hoch0
32168421

Die Zahl 3 ist somit 11 (also 2+1)

Die Zahl 17 = 10001

Gehen wir jetzt auf die Ausgangsrechnung:

10011010 + 110110 = ?

Schreiben wir um:

154 +54 = 208

Jetzt könnten wir dieses Ergebnis wieder umrechnen, aber wir wollen addieren:

1+1=10 dh, wir haben das, was wir auch beim normalen Addieren als Übertrag haben. 

10011010+110110 = 11010000 

(von rechts beginnend: 0+0=0, 1+1=10 null an 1 weiter, 0+1+1(weiter) = 10, wieder 0 an 1 weiter.....)

 

  

 

 

 

 

 

 

 

Zurück
binary-code-475664_1920.jpg